International Journal of Molecular Sciences (Oct 2021)

Quercetin-3-Glucoside Extracted from Apple Pomace Induces Cell Cycle Arrest and Apoptosis by Increasing Intracellular ROS Levels

  • Arti Nile,
  • Shivraj Hariram Nile,
  • Juhyun Shin,
  • Gyunseok Park,
  • Jae-Wook Oh

DOI
https://doi.org/10.3390/ijms221910749
Journal volume & issue
Vol. 22, no. 19
p. 10749

Abstract

Read online

Cervical cancer is a life-threatening disease and the fourth most common cancer among women worldwide. Apple pomace is a multifunctional phenolic compound possessing effective biological activity against cervical cancer cells. This study aimed to investigate the anticancer effects of quercetin-3-glucoside (Q3G) extracted from apple pomace in HeLa cell lines and analyze its molecular mechanisms. High-performance liquid chromatography revealed that Q3G, coumaric acid, phloridzin, quercetin, and phloretin are the major polyphenolic compounds constituting apple pomace. Among them, Q3G possessed the greatest antioxidant and anti-inflammatory effects in vitro and exhibited significant cytotoxic effects in HeLa cells in a dose-and time-dependent manner. Flow cytometric analysis indicated that Q3G induced cell cycle arrest at the S phase in a time-dependent manner by altering cyclin-dependent kinase 2. Moreover, it induced apoptosis via chromosomal DNA degradation and increased reactive oxygen species generation. Furthermore, Q3G treatment altered the apoptosis-associated protein expression in the cells by activating caspase-9/-3, downregulating anti-apoptosis protein B-cell lymphoma (Bcl)-2 expressions and up regulating the pro-apoptotic Bcl-2-associated X protein. BH3-interacting domain death agonist cleavage occurred prior to the degradation of an anti-apoptotic Mu-2-related death-inducing gene involved in cell death signaling. Consequently, apple pomace Q3G holds promise as an anti-inflammatory and anticancer agent for treating cervical cancer.

Keywords