Journal of Asian Ceramic Societies (Jun 2014)
Relaxor behavior in lead-free Ba(Ti1−xScx/2Nbx/2)O3 ceramics
Abstract
Solid solutions of (1−x)BaTiO3-xBaSc1/2Nb1/2O3 (BT-BSN) with x = 0.025, 0.05, 0.075, 0.1 and 0.125 were prepared by a high temperature solid-state reaction technique. The effects of the Ba(Sc1/2Nb1/2)O3 addition on the phase composition, dielectric properties, as well as polarization-electric field (P-E) loops of the BT-BSN solid solution were investigated. The room-temperature X-ray diffraction analyses of all the ceramics revealed a perovskite phase after sintering at 1350 °C with a composition-dependent symmetry. Temperature and frequency dependence of the dielectric permittivity and losses have been explored: ceramics of compositions x ≤ 0.075 showed normal ferroelectric behavior, while ceramics with x ≥ 0.1 were of relaxor type. The degree of diffuseness and the relaxor effect increase while the transition temperature (TC or Tm) decreases when both scandium and niobium are introduced in the BaTiO3 lattice. Ceramics of composition x = 0.125 exhibited interesting relaxor characteristics at 10 kHz: ΔTm = 20 K, ɛr = 12,000, and Tm = 140 K. In addition, modeled using Vogel–Fülcher relation, this same composition showed the fitting parameters: Ea = 0.0503 eV, f0 = 1.129 × 1014 Hz and TVF = 166.85 K.
Keywords