Cells (Oct 2021)
First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection
Abstract
There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling.
Keywords