Water Science and Technology (Jan 2022)

Preparation of magnetic copper ferrite nanoparticle as peroxymonosulfate activating catalyst for effective degradation of levofloxacin

  • Jing Zhao,
  • Pengfei Xiao,
  • Shuang Han,
  • Musajan Zulhumar,
  • Dedong Wu

DOI
https://doi.org/10.2166/wst.2021.627
Journal volume & issue
Vol. 85, no. 2
pp. 645 – 663

Abstract

Read online

Magnetic CuFe2O4 nanoparticles were successfully synthesized with a coprecipitation method at 500 °C calcination temperature, and were utilized to degrade levofloxacin (LEV) as a peroxymonosulfate (PMS) activator. The structure and composition of the nanocatalyst were characterized by a series of methods, including scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer and thermogravimetric analysis. The effects of the PMS concentration, the catalyst dosage, the LEV initial concentration, the pH value and the inorganic anions on the LEV degradation were also explored. The results revealed that the designed CuFe2O4/PMS system had high activity and excellent stability in the complex conditions. The degradation efficiency of LEV still reached above 80% after four recycles of CuFe2O4 catalyst. The reactive species quenching experiments and electron paramagnetic resonance analysis suggested the existence of superoxide radicals, single oxygen, hydroxy radicals and sulfate radicals, and the first two were dominant radical oxygen species. Based on the mechanism analyses, the efficient degradation of LEV was probably due to the continuous generation of reactive species under the condition of Fe(III)/Fe(II) and Cu(II)/Cu(I) redox cycles. The research provided a reasonable reference for the PMS activation mechanism-based spinel-type ferrite catalysis. HIGHLIGHTS The synthesized CuFe2O4 nanoparticle exhibited excellent structural characteristics.; The influencing factors for LEV degradation in CuFe2O4/PMS system were explored.; The CuFe2O4 catalyst exhibited outstanding reusability, stability and easier separation.; The mechanism of PMS activation based on catalysis of CuFe2O4 was further explored.;

Keywords