Scientific Reports (May 2021)

Diamine vapor treatment of viscoelastic graphene oxide liquid crystal for gas barrier coating

  • Seung Eun Choi,
  • Sung-Soo Kim,
  • Eunji Choi,
  • Ji Hoon Kim,
  • Yunkyu Choi,
  • Junhyeok Kang,
  • Ohchan Kwon,
  • Dae Woo Kim

DOI
https://doi.org/10.1038/s41598-021-88955-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract A layered graphene oxide/ethylenediamine (GO/EDA) composite film was developed by exposing aqueous GO liquid crystal (GOLC) coating to EDA vapor and its effects on the gas barrier performance of GO film were systematically investigated. When a GO/EDA coating with a thickness of approximately 1 μm was applied to a neat polyethylene terephthalate (PET) film, the resultant film was highly impermeable to gas molecules, particularly reducing the gas permeance up to 99.6% for He and 98.5% for H2 in comparison to the neat PET film. The gas barrier properties can be attributed to the long diffusion length through stacked GO nanosheets. The EDA can crosslink oxygen-containing groups of GO, enhancing the mechanical properties of the GO/EDA coating with hardness and elastic modulus values up to 1.14 and 28.7 GPa, respectively. By the synergistic effect of the viscoelastic properties of GOLC and the volatility of EDA, this coating method can be applied to complex geometries and EDA intercalation can be spontaneously achieved through the scaffold of the GOLC.