Journal of Synchrotron Radiation (Mar 2022)

Effective coordination numbers from EXAFS: general approaches for lanthanide and actinide dioxides

  • Anna Romanchuk,
  • Alexander Trigub,
  • Tatiana Plakhova,
  • Anastasiia Kuzenkova,
  • Roman Svetogorov,
  • Kristina Kvashnina,
  • Stepan Kalmykov

DOI
https://doi.org/10.1107/S160057752101300X
Journal volume & issue
Vol. 29, no. 2
pp. 288 – 294

Abstract

Read online

Extended X-ray absorption fine structure (EXAFS) is a comprehensive and usable method for characterizing the structures of various materials, including radioactive and nuclear materials. Unceasing discussions about the interpretation of EXAFS results for actinide nanoparticles (NPs) or colloids were still present during the last decade. In this study, new experimental data for PuO2 and CeO2 NPs with different average sizes were compared with published data on AnO2 NPs that highlight the best fit and interpretation of the structural data. In terms of the structure, PuO2, CeO2, ThO2, and UO2 NPs exhibit similar behaviors. Only ThO2 NPs have a more disordered and even partly amorphous structure, which results in EXAFS characteristics. The proposed new core-shell model for NPs with calculated effective coordination number perfectly fits the results of the variations in a metal–metal shell with a decrease in NP size.

Keywords