Department of Chemistry, University of Zürich, Zürich, Switzerland
Dietmar Benke
Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.