PLoS ONE (Jan 2008)

Highly specific gene silencing by artificial miRNAs in rice.

  • Norman Warthmann,
  • Hao Chen,
  • Stephan Ossowski,
  • Detlef Weigel,
  • Philippe Hervé

DOI
https://doi.org/10.1371/journal.pone.0001829
Journal volume & issue
Vol. 3, no. 3
p. e1829

Abstract

Read online

BACKGROUND: Endogenous microRNAs (miRNAs) are potent negative regulators of gene expression in plants and animals. Artificial miRNAs (amiRNAs)-designed to target one or several genes of interest-provide a new and highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. METHODOLOGY: We devised an amiRNA-based strategy for both japonica and indica type strains of cultivated rice, Oryza sativa. Using an endogenous rice miRNA precursor and customized 21mers, we designed amiRNA constructs targeting three different genes (Pds, Spl11, and Eui1/CYP714D1). Upon constitutive expression of these amiRNAs in the varieties Nipponbare (japonica) and IR64 (indica), the targeted genes are down-regulated by amiRNA-guided cleavage of the transcripts, resulting in the expected mutant phenotypes. The effects are highly specific to the target gene, the transgenes are stably inherited and they remain effective in the progeny. CONCLUSION/SIGNIFICANCE: Our results not only show that amiRNAs can efficiently trigger gene silencing in a monocot crop, but also that amiRNAs can effectively modulate agronomically important traits in varieties used in modern breeding programs. We provide all software tools and a protocol for the design of rice amiRNA constructs, which can be easily adapted to other crops. The approach is suited for candidate gene validation, comparative functional genomics between different varieties, and for improvement of agronomic performance and nutritional value.