IEEE Access (Jan 2019)

A Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and Convolutional Neural Networks

  • Ziqian Wu,
  • Tianjie Lan,
  • Cuiwei Yang,
  • Zhenning Nie

DOI
https://doi.org/10.1109/ACCESS.2019.2956050
Journal volume & issue
Vol. 7
pp. 170820 – 170830

Abstract

Read online

Electrocardiogram (ECG) is an efficient and commonly used tool for detecting arrhythmias. With the development of dynamic ECG monitoring, an effective and simple algorithm is needed to deal with large quantities of ECG data. In this study, we proposed a method to detect multiple arrhythmias based on time-frequency analysis and convolutional neural networks. For a short-time (10 s) single-lead ECG signal, the time-frequency distribution matrix of the signal was first obtained using a time-frequency transform method, and then a convolutional neural network was used to discriminate the rhythm of the signal. ECG data in multiple databases were used and were divided into 12 classes. Finally, the performance of three kinds of time-frequency transform methods are evaluated, including short-time Fourier transform (STFT), continuous wavelet transform (CWT), and pseudo Wigner-Ville distribution (PWVD). The best result was obtained by STFT, with an accuracy of 96.65%, an average sensitivity of 96.47%, an average specificity of 99.68%, and an average F1 score of 96.27%, respectively. Especially, the area under curve (AUC) value is 0.9987. The proposed method in this work may be efficient and valuable to detect multiple arrhythmias for dynamic ECG monitoring.

Keywords