Scientific Reports (Jul 2024)
Accounting for minimum data required to train a machine learning model to accurately monitor Australian dairy pastures using remote sensing
Abstract
Abstract Precision in grazing management is highly dependent on accurate pasture monitoring. Typically, this is often overlooked because existing approaches are labour-intensive, need calibration, and are commonly perceived as inaccurate. Machine-learning processes harnessing big data, including remote sensing, can offer a new era of decision-support tools (DST) for pasture monitoring. Its application on-farm remains poor because of a lack of evidence about its accuracy. This study aimed at evaluating and quantifying the minimum data required to train a machine-learning satellite-based DST focusing on accurate pasture biomass prediction using this approach. Management data from 14 farms in New South Wales, Australia and measured pasture biomass throughout 12 consecutive months using a calibrated rising plate meter (RPM) as well as pasture biomass estimated using a DST based on high temporal/spatial resolution satellite images were available. Data were balanced according to farm and week of each month and randomly allocated for model evaluation (20%) and for progressive training (80%) as follows: 25% training subset (1W: week 1 in each month); 50% (2W: week 1 and 3); 75% (3W: week 1, 3, and 4); and 100% (4W: week 1 to 4). Pasture biomass estimates using the DST across all training datasets were evaluated against a calibrated rising plate meter (RPM) using mean-absolute error (MAE, kg DM/ha) among other statistics. Tukey’s HSD test was used to determine the differences between MAE across all training datasets. Relative to the control (no training, MAE: 498 kg DM ha−1) 1W did not improve the prediction accuracy of the DST (P > 0.05). With the 2W training dataset, the MAE decreased to 342 kg DM ha−1 (P 0.05). This study accounts for minimal training data for a machine-learning DST to monitor pastures from satellites with comparable accuracy to a calibrated RPM which is considered the ‘gold standard’ for pasture biomass monitoring.
Keywords