Materials Today Advances (Jun 2024)
Dynamic and controlled stretching of macroscopic crystalline membranes towards unprecedented levels
Abstract
Imposing and controlling strain in materials such as semiconductors or ferroelectrics is a promising way to obtain new or enhance existing properties. Although the field of strain engineering has seen a rapid expansion over the last two decades, straining semiconductor membranes over large areas remains a challenge. A generic way of tuning strain and hence band structure and electric or magnetic properties of any crystalline material can be obtained by compression of a composite structure involving poorly compressible elastomers. Mechanically similar to the principle of a hydraulic press, this work proposes a device and describes analytically a methodology to easily strain macroscopic membranes up to unprecedented values. Using in-situ X-ray diffraction and Raman spectroscopy, we tuned the biaxial strain in silicon membranes up to a value of 2.1 %, paving the way for new studies in the field of strain related physics, from semiconductors to perovskite oxide multiferroics.