Frontiers in Neurorobotics (Nov 2016)
An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger
Abstract
In this paper, we present an electromyographic (EMG) control interface for a supernumerary robotic finger. This novel wearable robot can be used to compensate the missing grasping abilities in chronic stroke patients or to augment human healthy hand so to enhance its grasping capabilities and workspace. The proposed EMG interface controls the motion of the robotic extra finger and its joint compliance. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bi-manual tasks have been performed with the help of the robotic device and simulating a paretic hand. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both the sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used for both compensation and augmentation purposes. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs.
Keywords