Journal of Agricultural Machinery (Sep 2019)
Risk Analysis of Sugarcane Stem Transportation Operation Delays Using the FMEA-ANP Hybrid Approach
Abstract
Introduction Given the risk management and improving the process, reliability is important in operations and production management, especially agricultural process. Failure modes and effects analysis (FMEA) is regarded as one of the most powerful methods in this area. High applicability and proper analyzability of FMEA have caused to be among the most important techniques of systems for risk analysis and safety improvement. Risk management in all sectors is important, especially in agricultural sector. Sugarcane is one of the industrial crops used as raw material for several major and minor industries. In Iran, this crop is cultivated by sugarcane agro-industry companies. The sugarcane trailers were used to transport harvested sugarcane from farm to mill in these companies. There are many problems to milling it on time. One of the most important risks involved in sugarcane transportation is the delays encountered in this process which can affect the quality and quantity of the product. Delay in milling of the harvested sugarcane is caused by various reasons in agro-industry units including factory downtime, breakdowns of tractors at factory gate, tractor accident in factory yard and staff shift changes creating long queues. So, considering and using risk management techniques and eliminating risk factors can be an effective step to increase the efficiency of this process. Materials and Methods This research was carried out on Sugarcane and By-Products Development Company of Khuzestan. At first, the sugarcane transport operations and used equipment were investigated through an interview with experts in the safety and technical sectors and engineers of the Sugarcane and By-Products Development Company of Khuzestan and the study of related books in 2017. After that, the defects and errors of each equipment that caused technical problems and problems in other equipment, as well as the occurrence of injuries and human casualties were identified. Finally, the risks were written for valuation in the FMEA method paper. In this research, risk pricing was based on the Brainstorming method. Risk evaluation is based on the ranking of the effect severity, the risk occurrence probability and the degree of risk detection available in the FMEA method. In this research, analytical network process (ANP), a modern and powerful method in the decision-making field, has been used in combination with FMEA (FMEA-ANP) for defeating the shortcomings. FMEA-ANP considers mutual relationships of hazardous factors, and by offering a certain structure, develops a systematic and flexible view in risk management scope. The suggested method deploys a simple concept of risk priority number and assigns different importance in the form of power for each factor. The resulted RPN will cope better with the system, in which it is applied. This method provides a more accurate analysis of risk and, consequently, more efficient and effective actions, causing attainment and maintenance of more desirable reliability. Results and Discussion The results of FMEA-ANP model indicated that the mill equipment in the sugar factory is the most important delayed factor (failure) in the sugarcane transformation. For this reason, the basis failure causes in the sugar factory has been carefully investigated and it has been concluded by experts' opinions that factory mill and the conveyers failures are important causes of the delay in this process, respectively. Based on statistical analysis, 73.15% of the factory downtimes were related to mill and ranked as first compared with the other risk factors. Among the conveyors, the most damage was related to the inlet conveyor to the first mill and 49% of conveyors failures occurred in this conveyor. Conclusions This research validated the application of FMEA-ANP for the rational organization of the harvest-transport complex. According to this investigation, the probable downtimes and delays can be prevented by implementing the optimal preventive repair and maintenance planning in the sugar factory, and in particular on the factory mill equipment. In addition, efforts to adapt the speed of harvesting and the speed of delivery by the factory can be effective in reducing the delivery delay time by the factory.
Keywords