Remote Sensing (Oct 2023)

Estimating Early Summer Snow Depth on Sea Ice Using a Radiative Transfer Model and Optical Satellite Data

  • Mingfeng Wang,
  • Natascha Oppelt

DOI
https://doi.org/10.3390/rs15205016
Journal volume & issue
Vol. 15, no. 20
p. 5016

Abstract

Read online

Sea ice regulates the overall energy exchange and radiation budget of the Arctic region, and understanding this relationship requires an accurate determination of snow depth. However, methods for deriving snow depth have a large error through the annual winter and early spring periods due to the potential complexity of surface melting during early summer. In this study, we explore the potential of retrieving snow depth during the early summer using optical satellite imagery of the sea-ice cover. Measurements using VIS/IR (visible and infrared) usually feature much higher spatial resolution than L-band satellite data and can provide additional surface melting and leads information; in addition, considering the snow grain size–snow surface temperature interaction, there is co-variability between the observed sea-ice surface broadband albedo using an optical satellite sensor, the sea-ice surface temperature, and the retrieval target of snow depth on the spatial scale of optical imagery samples. We applied a surface classification procedure to optical satellite imagery and introduce an approach to derive snow depth from optical satellite imagery and ice surface temperature data using two solar radiation transfer models: the Delta-Eddington solar radiation model, which is the shortwave radiative scheme of the Los Alamos sea-ice model, and a simplified snow albedo scheme, which is tuned to the observational data of buoys. The snow depth was inversed from the model simulation results using a lookup-table-based method. For comparison with the observational data, using the Delta-Eddington solar radiation model, about 55% of the differences are below 5 cm, and thicker snowpack has a larger bias; using the simplified snow albedo scheme, a mean difference of 4.1 cm between retrieval and measurements was found, with 93% of the differences being smaller than 5 cm. This approach can be applied to optical satellite imagery acquired under clear-sky conditions and can serve as an addition to overcome the limitations of existing methods.

Keywords