Chemical Attachment of 5-Nitrosalicylaldimine Motif to Silatrane Resulting in an Organic–Inorganic Structure with High Medicinal Significance
Mirela-Fernanda Zaltariov,
Mihaela Turtoi,
Dragos Peptanariu,
Ana-Maria Macsim,
Lilia Clima,
Corneliu Cojocaru,
Nicoleta Vornicu,
Bianca-Iulia Ciubotaru,
Alexandra Bargan,
Manuela Calin,
Maria Cazacu
Affiliations
Mirela-Fernanda Zaltariov
Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Mihaela Turtoi
Medical and Pharmaceutical Bionanotechnologies Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
Dragos Peptanariu
Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Ana-Maria Macsim
NMR Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Lilia Clima
Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Corneliu Cojocaru
Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Nicoleta Vornicu
Metropolitan Center of Research T.A.B.O.R, The Metropolitanate of Moldavia and Bukovina, 700066 Iasi, Romania
Bianca-Iulia Ciubotaru
Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Alexandra Bargan
Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Manuela Calin
Medical and Pharmaceutical Bionanotechnologies Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
Maria Cazacu
Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania
Two chemical motifs of interest for medicinal chemistry, silatrane as 1-(3-aminopropyl) silatrane (SIL M), and nitro group attached in position 5 to salicylaldehyde, are coupled in a new structure, 1-(3-{[(2-hydroxy-5-nitrophenyl)methylidene]amino}propyl)silatrane (SIL-BS), through an azomethine moiety, also known as a versatile pharmacophore. The high purity isolated compound was structurally characterized by an elemental, spectral, and single crystal X-ray diffraction analysis. Given the structural premises for being a biologically active compound, different specific techniques and protocols have been used to evaluate their in vitro hydrolytic stability in simulated physiological conditions, the cytotoxicity on two cancer cell lines (HepG2 and MCF7), and protein binding ability—with a major role in drug ADME (Absorption, Distribution, Metabolism and Excretion), in parallel with those of the SIL M. While the latter had a good biocompatibility, the nitro-silatrane derivative, SIL-BS, exhibited a higher cytotoxic activity on HepG2 and MCF7 cell lines, performance assigned, among others, to the known capacity of the nitro group to promote a specific cytotoxicity by a “activation by reduction” mechanism. Both compounds exhibited increased bio- and muco-adhesiveness, which can favor an optimized therapeutic effect by increased drug permeation and residence time in tumor location. Additional benefits of these compounds have been demonstrated by their antimicrobial activity on several fungi and bacteria species. Molecular docking computations on Human Serum Albumin (HSA) and MPRO COVID-19 protease demonstrated their potential in the development of new drugs for combined therapy.