Increased circulating platelet-derived extracellular vesicles in severe COVID-19 disease
Tuukka Helin,
Mari Palviainen,
Marja Lemponen,
Katariina Maaninka,
Pia Siljander,
Lotta Joutsi-Korhonen
Affiliations
Tuukka Helin
HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
Mari Palviainen
EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
Marja Lemponen
HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
Katariina Maaninka
EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
Pia Siljander
EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
Lotta Joutsi-Korhonen
HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
AbstractCoagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200–1000 nm) and large EVs/RCs (1000–4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50–200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.