Genetics Selection Evolution (Jun 2010)

Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (<it>Salmo salar</it>)

  • Moen Thomas,
  • Baranski Matthew,
  • Våge Dag

DOI
https://doi.org/10.1186/1297-9686-42-17
Journal volume & issue
Vol. 42, no. 1
p. 17

Abstract

Read online

Abstract Background Flesh colour and growth related traits in salmonids are both commercially important and of great interest from a physiological and evolutionary perspective. The aim of this study was to identify quantitative trait loci (QTL) affecting flesh colour and growth related traits in an F2 population derived from an isolated, landlocked wild population in Norway (Byglands Bleke) and a commercial production population. Methods One hundred and twenty-eight informative microsatellite loci distributed across all 29 linkage groups in Atlantic salmon were genotyped in individuals from four F2 families that were selected from the ends of the flesh colour distribution. Genotyping of 23 additional loci and two additional families was performed on a number of linkage groups harbouring putative QTL. QTL analysis was performed using a line-cross model assuming fixation of alternate QTL alleles and a half-sib model with no assumptions about the number and frequency of QTL alleles in the founder populations. Results A moderate to strong phenotypic correlation was found between colour, length and weight traits. In total, 13 genome-wide significant QTL were detected for all traits using the line-cross model, including three genome-wide significant QTL for flesh colour (Chr 6, Chr 26 and Chr 4). In addition, 32 suggestive QTL were detected (chromosome-wide P Conclusions A large number of significant and suggestive QTL for flesh colour and growth traits were found in an F2 population of Atlantic salmon. Chr 26 and Chr 4 presented the strongest evidence for significant QTL affecting flesh colour, while Chr 10, Chr 5, and Chr 4 presented the strongest evidence for significant QTL affecting growth traits (length and weight). These QTL could be strong candidates for use in marker-assisted selection and provide a starting point for further characterisation of the genetic components underlying flesh colour and growth.