European Physical Journal C: Particles and Fields (Jan 2022)

On a structure of the one-loop divergences in 4D harmonic superspace sigma-model

  • I. L. Buchbinder,
  • A. S. Budekhina,
  • B. S. Merzlikin

DOI
https://doi.org/10.1140/epjc/s10052-022-09990-8
Journal volume & issue
Vol. 82, no. 1
pp. 1 – 10

Abstract

Read online

Abstract We study the quantum structure of four-dimensional $${{\mathcal {N}}}=2$$ N = 2 superfield sigma-model formulated in harmonic superspace in terms of the omega-hypermultiplet superfield $$\omega $$ ω . The model is described by harmonic superfield sigma-model metric $$g_{ab}(\omega )$$ g ab ( ω ) and two potential-like superfields $$L^{++}_{a}(\omega )$$ L a + + ( ω ) and $$L^{(+4)}(\omega )$$ L ( + 4 ) ( ω ) . In bosonic component sector this model describes some hyper-Kähler manifold. The manifestly $${{\mathcal {N}}}=2$$ N = 2 supersymmetric covariant background-quantum splitting is constructed and the superfield proper-time technique is developed to calculate the one-loop effective action. The one-loop divergences of the superfield effective action are found for arbitrary $$g_{ab}(\omega ), L^{++}_{a}(\omega ), L^{(+4)}(\omega )$$ g ab ( ω ) , L a + + ( ω ) , L ( + 4 ) ( ω ) , where some specific analogy between the algebra of covariant derivatives in the sigma-model and the corresponding algebra in the $${{\mathcal {N}}}=2$$ N = 2 SYM theory is used. The component structure of divergences in the bosonic sector is discussed.