Applied Sciences (Apr 2022)

Digestate-Derived Ammonium Fertilizers and Their Blends as Substitutes to Synthetic Nitrogen Fertilizers

  • Amrita Saju,
  • Demi Ryan,
  • Ivona Sigurnjak,
  • Kieran Germaine,
  • David N. Dowling,
  • Erik Meers

DOI
https://doi.org/10.3390/app12083787
Journal volume & issue
Vol. 12, no. 8
p. 3787

Abstract

Read online

Nutrient recovery from biomass streams generates novel recycling-derived fertilizers (RDFs). The effect of RDFs depends on their nutrient content and variability, which can aid or hinder their use by end-users. Detailed characterization of RDFs can help in evaluating product properties, whereas blending RDFs can optimize their nutrient ratios and reduce nutrient variability. This study assesses ammonium nitrate (AN) from stripping-scrubbing, ammonium water (AW) and concentrate (CaE) from evaporation, and two tailor-made blends (AN + CaE and AW + CaE), for their potential as nitrogen (N) fertilizers in the pot cultivation of lettuce. Parallelly, a soil incubation experiment was conducted to investigate the N release dynamics of the tested RDFs. The RDFs were compared against the commercial calcium ammonium nitrate (CAN) and an unfertilized control. AN and AW fertilization resulted in a similar crop yield and N uptake to the CAN treatment. CaE and blends exhibited poor yield and N uptake, possibly due to the sodium toxicity detected. AN and AW displayed N fertilizer replacement values above 100%, whereas CaE and blends exhibited poor results in the current experiments. The soil incubation experiment showed a positive soil priming effect in AN and AW treatment, as their N release was over 100%. Further research under uncontrolled field conditions utilizing AN and AW for diverse crop types can validate their N replacement potential.

Keywords