Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives
Yanhong Wei,
Haijie Wang,
Caili Xi,
Ni Li,
Dong Li,
Chenguang Yao,
Ge Sun,
Hongmei Ge,
Kanghong Hu,
Qian Zhang
Affiliations
Yanhong Wei
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Haijie Wang
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Caili Xi
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Ni Li
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Dong Li
School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Chenguang Yao
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Ge Sun
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Hongmei Ge
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Kanghong Hu
National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Qian Zhang
School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.