Energy and AI (Sep 2024)
Energy Disaggregation of Industrial Machinery Utilizing Artificial Neural Networks for Non-intrusive Load Monitoring
Abstract
This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on energy efficiency and decarbonization measures, achieving energy transparency in production becomes crucial. Utilizing non-intrusive load monitoring, energy data analysis and processing can provide valuable insights for informed decision-making on energy efficiency improvements and emission reductions. While non-intrusive load monitoring has been extensively researched in the building and residential sectors, the application in the industrial manufacturing domain needs to be further explored. This paper addresses this research gap by adapting established non-intrusive load monitoring techniques to an industrial dataset. By employing artificial neural networks for energy disaggregation, the determination of energy consumption of industrial machinery is made possible. Therefore, a generally applicable cross-energy carrier method to disaggregate the energy consumption of machinery in manufacturing processes is developed using a design science research approach and validated through a practical case study utilizing a compressed air demonstrator. The results show that the utilization of artificial neural networks is well-suited for energy disaggregation of industrial data, effectively identifying on and off states, multi-level states and continuously variable states. Non-intrusive load monitoring should be further considered in the research of emerging artificial intelligence technologies in energy consumption evaluation. It can be a viable alternative for intrusive load monitoring and is a prerequisite to installing energy meters for every machine.