Journal of Nanobiotechnology (Jan 2023)
Deposition of hydrophilic Ti3C2Tx on a superhydrophobic ZnO nanorod array for improved surface-enhanced raman scattering performance
Abstract
Abstract Background Superhydrophobic substrate modifications are an effective way to improve SERS sensitivity by concentrating analyte molecules into a small surface area. However, it is difficult to manipulate low-volume liquid droplets on superhydrophobic substrates. Results To overcome this limitation, we deposited a hydrophilic Ti3C2Tx film on a superhydrophobic ZnO nanorod array to create a SERS substrate with improved analyte affinity. Combined with its interfacial charge transfer properties, this enabled a rhodamine 6G detection limit of 10−11 M to be achieved. In addition, the new SERS substrate showed potential for detection of biological macromolecules, such as microRNA. Conclusion Combined with its facile preparation, the SERS activity of ZnO/Ti3C2Tx suggests it may provide an ultrasensitive environmental pollutant-monitoring and effective substrate for biological analyte detection. Graphical Abstract
Keywords