Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal; Corresponding author.
Duarte Folgado
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
Letícia Fernandes
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
Sara Santos
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
Mariana Abreu
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
Patrícia Bota
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
Hui Liu
Cognitive Systems Lab, University of Bremen, Bremen, Germany
Tanja Schultz
Cognitive Systems Lab, University of Bremen, Bremen, Germany
Hugo Gamboa
Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal; Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciê,ncias e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica 2892-516, Portugal
Time series feature extraction is one of the preliminary steps of conventional machine learning pipelines. Quite often, this process ends being a time consuming and complex task as data scientists must consider a combination between a multitude of domain knowledge factors and coding implementation. We present in this paper a Python package entitled Time Series Feature Extraction Library (TSFEL), which computes over 60 different features extracted across temporal, statistical and spectral domains. User customisation is achieved using either an online interface or a conventional Python package for more flexibility and integration into real deployment scenarios. TSFEL is designed to support the process of fast exploratory data analysis and feature extraction on time series with computational cost evaluation.