Chem & Bio Engineering (Feb 2024)

Destructive Adsorption of Nitrogen Trifluoride (NF3) Using M‑MOF-74 with Open Metal Sites

  • Shao-Min Wang,
  • Qian Zhang,
  • Yi-Tao Li,
  • Si-Chao Liu,
  • Qing-Yuan Yang

DOI
https://doi.org/10.1021/cbe.3c00096
Journal volume & issue
Vol. 1, no. 6
pp. 535 – 540

Abstract

Read online

Using solid adsorbents for the destructive sorption of nitrogen trifluoride (NF3) presents a potential solution to its dual challenges as a potent greenhouse gas and hazardous compound in microelectronics. In this study, a series of MOFs (M-MOF-74, M = Mg, Co, Ni, Zn) with open metal sites (OMSs) are utilized for NF3 adsorption. By employing single-component adsorption isotherms and the ideal adsorbed solution theory (IAST) selectivity calculations, the adsorption performance of various adsorbents is evaluated. The results indicate that Mg, Co, and Ni-MOF-74 exhibit high adsorption capacities for NF3, while Zn-MOF-74 shows a lower adsorption capacity, likely due to the weaker Lewis acidity of Zn2+. Experimental findings from PXRD and gas adsorption studies indicate structural pore alteration in the MOF-74 series following NF3 gas adsorption. Theoretical computational analyses reveal that the MOF-74 series has a higher adsorption affinity for NF3 compared to N2. This research provides insights into the use of efficient MOF sorbents for the destructive adsorption of NF3.