Applied Sciences (Dec 2022)
Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data
Abstract
The classification and extraction of street tree geometry information in road scenes is crucial in urban forest biomass statistics and road safety. To address the problem of 3D fine extraction of street trees in complex road scenes, this paper designs and investigates a method for extracting street tree geometry and forest parameters from vehicle-mounted LiDAR point clouds in road scenes based on a Gaussian distributed regional growth algorithm and Voronoi range constraints. Firstly, a large number of non-tree and other noise points, such as ground points, buildings, shrubs and vehicle points, are filtered by applying multi-geometric features; then, the main trunk of the street tree is extracted based on the vertical linear features of the tree and the region growth algorithm based on Gaussian distribution; secondly, a Voronoi polygon constraint is established to segment the single tree canopy region with the main trunk center of mass; finally, based on the extracted locations of the street trees and their 3D points, the tree growth parameters of individual trees are obtained for informative management and biomass estimation by combining geometric statistical methods. In this paper, the experimental data from vehicle-borne LiDAR point clouds of different typical areas were selected to verify that the proposed Gaussian-distributed regional growth algorithm can achieve fine classification and extraction of tree growth parameters for different types of roadside trees, with accuracy, recall and F1 values reaching 96.34%, 97.22% and 96.45%, respectively. This research method can be used for the extraction of 3D fine classification of street trees in complex road environments, which in turn can provide support for the safety management of traffic facilities and forest biomass estimation in urban environments.
Keywords