Communications Biology (Jan 2021)
Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon
Abstract
Alex Rivera-Millot et al. investigate copper homeostasis in the whooping cough agent Bordetella pertussis, which has a single copper defense mechanism via a metallochaperone diverted for copper passivation and two peroxide detoxification enzymes. This study demonstrates that copper up-regulates the copZ-prxgrx-gorB operon in macrophages, and this system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. This study brings insight into strategies aimed to optimize survival of a host-restricted pathogen.