Aerospace (Jan 2020)

Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft

  • Filomena Piscitelli,
  • Antonio Chiariello,
  • Dariusz Dabkowski,
  • Gianluca Corraro,
  • Francesco Marra,
  • Luigi Di Palma

DOI
https://doi.org/10.3390/aerospace7010002
Journal volume & issue
Vol. 7, no. 1
p. 2

Abstract

Read online

Traditional anti-icing/de-icing systems, i.e., thermal and pneumatic, in most cases require a power consumption not always allowable in small aircraft. Therefore, the use of passive systems, able to delay the ice formation, or reduce the ice adhesion strength once formed, with no additional energy consumption, can be considered as the most promising solution to solve the problem of the ice formation, most of all, for small aircraft. In some cases, the combination of a traditional icing protection system (electrical, pneumatic, and thermal) and the passive coatings can be considered as a strategic instrument to reduce the energy consumption. The effort of the present work was to develop a superhydrophobic coating, able to reduce the surface free energy (SFE) and the work of adhesion (WA) of substrates, by a simplified and non-expensive method. The developed coating, applied as a common paint with an aerograph, is able to reduce the SFE of substrates by 99% and the WA by 94%. The effects of both chemistry and surface morphology on the wettability of surfaces were also studied. In the reference samples, the higher the roughness, the lower the SFE and the WA. In coated samples with roughness ranging from 0.4 and 3 µm no relevant variations in water contact angle, nor in SFE and WA were observed.

Keywords