Entropy (Jul 2019)

An Information Entropy-Based Modeling Method for the Measurement System

  • Li Kong,
  • Hao Pan,
  • Xuewei Li,
  • Shuangbao Ma,
  • Qi Xu,
  • Kaibo Zhou

DOI
https://doi.org/10.3390/e21070691
Journal volume & issue
Vol. 21, no. 7
p. 691

Abstract

Read online

Measurement is a key method to obtain information from the real world and is widely used in human life. A unified model of measurement systems is critical to the design and optimization of measurement systems. However, the existing models of measurement systems are too abstract. To a certain extent, this makes it difficult to have a clear overall understanding of measurement systems and how to implement information acquisition. Meanwhile, this also leads to limitations in the application of these models. Information entropy is a measure of information or uncertainty of a random variable and has strong representation ability. In this paper, an information entropy-based modeling method for measurement system is proposed. First, a modeling idea based on the viewpoint of information and uncertainty is described. Second, an entropy balance equation based on the chain rule for entropy is proposed for system modeling. Then, the entropy balance equation is used to establish the information entropy-based model of the measurement system. Finally, three cases of typical measurement units or processes are analyzed using the proposed method. Compared with the existing modeling approaches, the proposed method considers the modeling problem from the perspective of information and uncertainty. It focuses on the information loss of the measurand in the transmission process and the characterization of the specific role of the measurement unit. The proposed model can intuitively describe the processing and changes of information in the measurement system. It does not conflict with the existing models of the measurement system, but can complement the existing models of measurement systems, thus further enriching the existing measurement theory.

Keywords