Animals (Sep 2024)
Metagenomic and Metabolomic Analyses Reveal the Role of Gut Microbiome-Associated Metabolites in the Muscle Elasticity of the Large Yellow Croaker (<i>Larimichthys crocea</i>)
Abstract
The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to establish the relationship between muscle quality and intestinal flora in order to provide reference for the improvement of the muscle elasticity of LYC. In this study, the intestinal contents of high muscle elasticity males (IEHM), females (IEHF), and low muscle elasticity males (IELM) and females (IELF) were collected and subjected to metagenomic and metabolomic analyses. Metagenomic sequencing results showed that the intestinal flora structures of LYCs with different muscle elasticities were significantly different. The abundance of Streptophyta in the IELM (24.63%) and IELF (29.68%) groups was significantly higher than that in the IEHM and IEHF groups. The abundance of Vibrio scophthalmi (66.66%) in the IEHF group was the highest. Based on metabolomic analysis by liquid chromatograph-mass spectrometry, 107 differentially abundant metabolites were identified between the IEHM and IELM groups, and 100 differentially abundant metabolites were identified between the IEHF and IELF groups. Based on these metabolites, a large number of enriched metabolic pathways related to muscle elasticity were identified. Significant differences in the intestinal metabolism between groups with different muscle elasticities were identified. Moreover, the model of the relationship between the intestinal flora and metabolites was constructed, and the molecular mechanism of intestinal flora regulation of the nutrient metabolism was further revealed. The results help to understand the molecular mechanism of different muscle elasticities of LYC and provide an important reference for the study of the mechanism of the effects of LYC intestinal symbiotic bacteria on muscle development, and the development and application of probiotics in LYC.
Keywords