Frontiers in Plant Science (Sep 2022)
Genome-wide association study of coleoptile length with Shanxi wheat
Abstract
In arid and semi-arid regions, coleoptile length is a vital agronomic trait for wheat breeding. The coleoptile length determines the maximum depth that seeds can be sown, and it is critical for establishment of the crop. Therefore, identifying loci associated with coleoptile length in wheat is essential. In the present study, 282 accessions from Shanxi Province representing wheat breeding for the Loess Plateau were grown under three experimental conditions to study coleoptile length. The results of phenotypic variation indicated that drought stress and light stress could lead to shortening of coleoptile length. Under drought stress the growth rate of environmentally sensitive cultivars decreased more than insensitive cultivars. The broad-sense heritability (H2) of BLUP (best linear unbiased prediction) under various conditions showed G × E interaction for coleoptile length but was mainly influenced by heredity. Correlation analysis showed that correlation between plant height-related traits and coleoptile length was significant in modern cultivars whereas it was not significant in landraces. A total of 45 significant marker-trait associations (MTAs) for coleoptile length in the three conditions were identified using the 3VmrMLM (3 Variance-component multi-locus random-SNP-effect Mixed Linear Model) and MLM (mixed linear model). In total, nine stable genetic loci were identified via 3VmrMLM under the three conditions, explaining 2.94–7.79% of phenotypic variation. Five loci on chromosome 2B, 3A, 3B, and 5B have not been reported previously. Six loci had additive effects toward increasing coleoptile length, three of which are novel. Molecular markers for the loci with additive effects on coleoptile length can be used to breed cultivars with long coleoptiles.
Keywords