Nature Communications (Sep 2021)
Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion
- Xuan Liu,
- Heming Chen,
- Yiting Wang,
- Yueguang Si,
- Hongxin Zhang,
- Xiaomin Li,
- Zhengcheng Zhang,
- Biao Yan,
- Su Jiang,
- Fei Wang,
- Shijun Weng,
- Wendong Xu,
- Dongyuan Zhao,
- Jiayi Zhang,
- Fan Zhang
Affiliations
- Xuan Liu
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Heming Chen
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Yiting Wang
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Yueguang Si
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Hongxin Zhang
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Xiaomin Li
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Zhengcheng Zhang
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Biao Yan
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Su Jiang
- Department of Hand Surgery, Huashan Hospital, Priority Among Priorities of Shanghai Municipal Clinical Medicine Center, National Clinical Research Center for Aging and Medicine, Department of Hand and Upper Extremity Surgery, Jing’an District Central Hospital of Shanghai
- Fei Wang
- Department of Hand Surgery, Huashan Hospital, Priority Among Priorities of Shanghai Municipal Clinical Medicine Center, National Clinical Research Center for Aging and Medicine, Department of Hand and Upper Extremity Surgery, Jing’an District Central Hospital of Shanghai
- Shijun Weng
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Wendong Xu
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Dongyuan Zhao
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Jiayi Zhang
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- Fan Zhang
- Department of Chemistry, Institutes of Brain Science, State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University
- DOI
- https://doi.org/10.1038/s41467-021-25993-7
- Journal volume & issue
-
Vol. 12,
no. 1
pp. 1 – 12
Abstract
Conventional upconversion nanoparticles (UCNPs) cannot activate multiple neuron populations independently using optogenetics. Here the authors report trichromatic UCNPs with excitation-specific luminescence to allow activation of three distinct neuronal populations in the brain of awake mice.