Journal of Advanced Ceramics (Mar 2024)

Microstructure, elastic/mechanical and thermal properties of CrTaO4: A new thermal barrier material?

  • Shuang Zhang,
  • Xiaohui Wang,
  • Chao Zhang,
  • Huimin Xiang,
  • Yingwei Li,
  • Cheng Fang,
  • Mingliang Li,
  • Hailong Wang,
  • Yanchun Zhou

DOI
https://doi.org/10.26599/JAC.2024.9220862
Journal volume & issue
Vol. 13, no. 3
pp. 373 – 387

Abstract

Read online

CrTaO4 (or Cr0.5Ta0.5O2) has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys (RHEAs). This rarely encountered complex oxide can effectively prevent the outward diffusion of metal cations from the RHEAs. Moreover, the oxidation kinetics of CrTaO4-forming RHEAs is comparable to that of the well-known oxidation resistant Cr2O3- and Al2O3-forming Ni-based superalloys. However, CrTaO4 has been ignored and its mechanical and thermal properties have yet to be studied. To fill this research gap and explore the untapped potential for its applications, here we report for the first time the microstructure, mechanical and thermal properties of CrTaO4 prepared by hot-press sintering of solid-state reaction synthesized powders. Using the HAADF and ABF-STEM techniques, rutile crystal structure was confirmed and short range ordering was directly observed. In addition, segregation of Ta and Cr was identified. Intriguingly, CrTaO4 exhibits elastic/mechanical properties similar to those of yttria stabilized zirconia (YSZ) with Young’s modulus, shear modulus, and bulk modulus of 268, 107, and 181 GPa, respectively, and Vickers hardness, flexural strength, and fracture toughness of 12.2±0.44 GPa, 142±14 MPa, and 1.87±0.074 MPa·m1/2. The analogous elastic/mechanical properties of CrTaO4 to those of YSZ has spurred inquiries to lucrative leverage it as a new thermal barrier material. The measured melting point of CrTaO4 is 2103±20 K. The anisotropic thermal expansion coefficients are αa = (5.68±0.10)×10−6 K−1, αc = (7.81±0.11)×10−6 K−1, with an average thermal expansion coefficient of (6.39±0.11)×10−6 K−1. The room temperature thermal conductivity of CrTaO4 is 1.31 W·m−1·K−1 and declines to 0.66 W·m−1·K−1 at 1473 K, which are lower than most of the currently well-known thermal barrier materials. From the perspective of matched thermal expansion coefficient, CrTaO4 pertains to an eligible thermal barrier material for refractory metals such as Ta, Nb, and RHEAs, and ultrahigh temperature ceramics. As such, this work not only provides fundamental microstructure, elastic/mechanical and thermal properties that are instructive for understanding the protectiveness displayed by CrTaO4 on top of RHEAs but also outreaches its untapped potential as a new thermal barrier material.

Keywords