Atmospheric Chemistry and Physics (Sep 2016)

Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

  • J. H. Dingle,
  • K. Vu,
  • R. Bahreini,
  • R. Bahreini,
  • E. C. Apel,
  • T. L. Campos,
  • F. Flocke,
  • A. Fried,
  • S. Herndon,
  • A. J. Hills,
  • R. S. Hornbrook,
  • G. Huey,
  • L. Kaser,
  • D. D. Montzka,
  • J. B. Nowak,
  • M. Reeves,
  • D. Richter,
  • J. R. Roscioli,
  • S. Shertz,
  • M. Stell,
  • D. Tanner,
  • G. Tyndall,
  • J. Walega,
  • P. Weibring,
  • A. Weinheimer

DOI
https://doi.org/10.5194/acp-16-11207-2016
Journal volume & issue
Vol. 16
pp. 11207 – 11217

Abstract

Read online

Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext ∕ ΔCO) were higher in aged urban air masses compared to fresh air masses by ∼ 50 %. The resulting increase in Δβext ∕ ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g−1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11–12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.