Journal of High Energy Physics (Apr 2022)

Generalized Lense-Thirring metrics: higher-curvature corrections and solutions with matter

  • Finnian Gray,
  • Robie A. Hennigar,
  • David Kubizňák,
  • Robert B. Mann,
  • Manu Srivastava

DOI
https://doi.org/10.1007/JHEP04(2022)070
Journal volume & issue
Vol. 2022, no. 4
pp. 1 – 26

Abstract

Read online

Abstract The Lense-Thirring spacetime describes a 4-dimensional slowly rotating approximate solution of vacuum Einstein equations valid to a linear order in rotation parameter. It is fully characterized by a single metric function of the corresponding static (Schwarzschild) solution. In this paper, we introduce a generalization of the Lense-Thirring spacetimes to the higher-dimensional multiply-spinning case, with an ansatz that is not necessarily fully characterized by a single (static) metric function. This generalization lets us study slowly rotating spacetimes in various higher curvature gravities as well as in the presence of non-trivial matter. Moreover, the ansatz can be recast in Painlevé-Gullstrand form (and thence is manifestly regular on the horizon) and admits a tower of exact rank-2 and higher rank Killing tensors that rapidly grows with the number of dimensions. In particular, we construct slowly multiply-spinning solutions in Lovelock gravity and notably show that in four dimensions Einstein gravity is the only non-trivial theory amongst all up to quartic curvature gravities that admits a Lense-Thirring solution characterized by a single metric function.

Keywords