Micromachines (Oct 2024)
Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter
Abstract
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser.
Keywords