Advances in Mechanical Engineering (May 2022)

Optimal design of a pneumatic atomizer using response surface method to obtain more uniform coatings

  • Wentong Qiao,
  • Lijuan Qian,
  • Chenlin Zhu,
  • Jingqi Liu

DOI
https://doi.org/10.1177/16878132221098851
Journal volume & issue
Vol. 14

Abstract

Read online

Uneven coatings with overspray often occur to the target plate when using a pneumatic atomizer. This issue is mainly due to the high-level pressure in the plate center, which results from unreasonable design of the structure and operating parameters in atomizer. In this paper, an optimal design for these parameters was established by response surface method (RSM) and computational fluid dynamics (CFD) to produce more uniform coatings. The velocity data measured by a hot-wire anemometry experimentally verified the numerical model. Then, annular air hole diameter, horn flare angle, annular air pressure, and shaping air pressure were selected as design variables while the central pressure was chosen as objective function. The RSM with the central composite design (CCD) was employed to construct the regression equation that expresses the relationship between the central pressure and design parameters. Finally, the optimum combination of the parameters was carried out for reducing the central pressure, and the interaction effects between the parameters were also analyzed. The optimization results show that the central pressure is decreased by 44.6% and the performance of droplet size distribution is significantly improved. The experiment confirmed the effectiveness of the optimized atomizer to obtain well-distributed coatings.