DEVELOPMENT AND RESEARCH OF SOFTWARE SOLUTION FOR BUSINESS PROCESS MODEL CORRECTNESS ANALYSIS USING MACHINE LEARNING
Abstract
Poorly designed business process models are a source of errors and the subsequent costs associated with these errors, such as monetary costs, lost time, or even some harmful impact on people or the environment if the erroneous business process models are associated with critical industries. The BPM (Business Process Management) lifecycle usually consists of designing, implementing, monitoring, and controlling the business process execution, but it lacks continuous quality control of the created BPMN (Business Process Model and Notation) models. Thus, this paper considers the problem of business process models classification based on their correctness, which solution will ensure quality control of the designed business process models. Thus, this study aims to improve the quality of business process models by developing a software solution for business process models classification based on their correctness. The subject of the study is the process of business process models classification based on their correctness, which uses quality measures and thresholds, usually, complexity measures. The subject of the study is a software solution for business process models classification based on their correctness. Therefore, in this study, the algorithm to solve the problem of BPMN models classification using logistic regression, interface complexity, and modularity measures is proposed, the software requirements are determined, the software development tools are selected, the software for business process models classification based on their correctness is designed, the corresponding software components are developed, the use of a software solution for solving the problem of business process models classification based on their correctness is demonstrated, the obtained results are analyzed and discussed. The developed software indicates high performance of BPMN models classification based on their correctness, achieving high accuracy (99.14 %), precision (99.88 %), recall (99.23 %), and F-score (99.56 %), highlighting the high performance of modeling errors detection.
Keywords