Scientific Reports (Aug 2017)

Drosophila protease ClpXP specifically degrades DmLRPPRC1 controlling mitochondrial mRNA and translation

  • Yuichi Matsushima,
  • Yuta Hirofuji,
  • Masamune Aihara,
  • Song Yue,
  • Takeshi Uchiumi,
  • Laurie S. Kaguni,
  • Dongchon Kang

DOI
https://doi.org/10.1038/s41598-017-08088-6
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 14

Abstract

Read online

Abstract ClpXP is the major protease in the mitochondrial matrix in eukaryotes, and is well conserved among species. ClpXP is composed of a proteolytic subunit, ClpP, and a chaperone-like subunit, ClpX. Although it has been proposed that ClpXP is required for the mitochondrial unfolded protein response, additional roles for ClpXP in mitochondrial biogenesis are unclear. Here, we found that Drosophila leucine-rich pentatricopeptide repeat domain-containing protein 1 (DmLRPPRC1) is a specific substrate of ClpXP. Depletion or introduction of catalytically inactive mutation of ClpP increases DmLRPPRC1 and causes non-uniform increases of mitochondrial mRNAs, accumulation of some unprocessed mitochondrial transcripts, and modest repression of mitochondrial translation in Drosophila Schneider S2 cells. Moreover, DmLRPPRC1 over-expression induces the phenotypes similar to those observed when ClpP is depleted. Taken together, ClpXP regulates mitochondrial gene expression by changing the protein level of DmLRPPRC1 in Drosophila Schneider S2 cells.