Saudi Journal of Medicine and Medical Sciences (Jan 2016)

Role of various potassium channels in caffeine-induced aortic relaxation in rats

  • Rabia Latif,
  • Ahmed Badar

DOI
https://doi.org/10.4103/1658-631X.188251
Journal volume & issue
Vol. 4, no. 3
pp. 197 – 201

Abstract

Read online

Background: Studies done on caffeine-induced changes in aortic rings have demonstrated inconclusive results. Moreover, the role of various potassium channels in caffeine-induced effects has not been explored so far. The present in vitro study was designed to explore the direct effects of caffeine on rat aortic rings and the role of various potassium channels in those changes/effects. Materials and Methods: This study was carried out in College of Medicine, University of Dammam. Aortic rings obtained from Sprague Dawley rats were mounted in the organ bath. Tension in the aortic rings was measured with an isometric force transducer and recorded with a PowerLab data-acquisition system. Aortic rings in relaxed and contractile state were exposed to caffeine and various potassium channel blockers (glyburide, 4-aminopyridine, or tetraethylammonium). Results: Caffeine produced significant relaxation of isolated aortic rings (baseline tension: 1.26 ± 0.30 g, tension after adding cumulative concentrations of caffeine: 1.12 ± 0.31 g,P 0.05), glyburide (tension induced by NE: 0.82 ± 0.35 g, tension after adding cumulative concentrations of caffeine: 0.79 ± 0.42 g,P> 0.05), and tetraethylammonium (tension induced by NE: 0.68 ± 0.34 g, tension after adding cumulative concentrations of caffeine: 0.67 ± 0.33 g,P> 0.05). Conclusion: Caffeine causes significant dilation of aortic rings, and this vasodilatory effect may involve ATP-dependent, calcium-mediated, or voltage-dependent potassium channels.

Keywords