Nature Communications (Aug 2021)

Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods

  • Tanglong Yuan,
  • Nana Yan,
  • Tianyi Fei,
  • Jitan Zheng,
  • Juan Meng,
  • Nana Li,
  • Jing Liu,
  • Haihang Zhang,
  • Long Xie,
  • Wenqin Ying,
  • Di Li,
  • Lei Shi,
  • Yongsen Sun,
  • Yongyao Li,
  • Yixue Li,
  • Yidi Sun,
  • Erwei Zuo

DOI
https://doi.org/10.1038/s41467-021-25217-y
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.