Frontiers in Psychology (Apr 2022)
Age Differences in Speech Perception in Noise and Sound Localization in Individuals With Subjective Normal Hearing
Abstract
Hearing loss in old age, which often goes untreated, has far-reaching consequences. Furthermore, reduction of cognitive abilities and dementia can also occur, which also affects quality of life. The aim of this study was to investigate the hearing performance of seniors without hearing complaints with respect to speech perception in noise and the ability to localize sounds. Results were tested for correlations with age and cognitive performance. The study included 40 subjects aged between 60 and 90 years (mean age: 69.3 years) with not self-reported hearing problems. The subjects were screened for dementia. Audiological tests included pure-tone audiometry and speech perception in two types of background noise (continuous and amplitude-modulated noise) which was either co-located or spatially separated (multi-source noise field, MSNF) from the target speech. Sound localization ability was assessed and hearing performance was self-evaluated by a questionnaire. Speech in noise and sound localization was compared with young normal hearing adults. Although considering themselves as hearing normal, 17 subjects had at least a mild hearing loss. There was a significant negative correlation between hearing loss and dementia screening (DemTect) score. Speech perception in noise decreased significantly with age. There were significant negative correlations between speech perception in noise and DemTect score for both spatial configurations. Mean SRTs obtained in the co-located noise condition with amplitude-modulated noise were on average 3.1 dB better than with continuous noise. This gap-listening effect was severely diminished compared to a younger normal hearing subject group. In continuous noise, spatial separation of speech and noise led to better SRTs compared to the co-located masker condition. SRTs in MSNF deteriorated in modulated noise compared to continuous noise by 2.6 dB. Highest impact of age was found for speech perception scores using noise stimuli with temporal modulation in binaural test conditions. Mean localization error was in the range of young adults. Mean amount of front/back confusions was 11.5% higher than for young adults. Speech perception tests in the presence of temporally modulated noise can serve as a screening method for early detection of hearing disorders in older adults. This allows for early prescription of hearing aids.
Keywords