Journal of Infection and Public Health (Dec 2023)
Application of multiplex realtime PCR detection for hemorrhagic fever syndrome viruses
Abstract
Background: Multiplex real-time PCR is a quick and cost effective method for detection of various gene simultaneously. HFSV (Hemorrhagic Fever Syndrome Virus) is a newly emerging infectious disease because of globalization and climate change. We tried to develop a molecular diagnostic technique for various causative viruses and evaluate its usefulness for improving public health. Methods: Molecular diagnostic test method that qualitatively detects viruses causing viral hemorrhagic fevers hired Taq-Man Real-time RT-PCR technique. The Ct value was experimentally observed three or more times at the RNA concentration before and after the detection limit. After designing a multiplex real-time RT-PCR test for target gene of selected 17 viruses, the detection limit for each target and the presence or absence of cross-reaction and interference reaction were evaluated to determine its availability. Results: Six kinds of viruses, including Crimean-Congo hemorrhagic fever virus, Omsk hemorrhagic fever virus, Sabia virus, Chapare virus, Yellow fever virus, and Variola virus (A4L gene, B12R gene), were able to confirm the detection limit of 0.5 copies/μl, and other Ebola virus, Marburg virus, Rift Valley fever virus, Kyasanur Forest disease virus, Junin virus, Guanarito virus, Machupo virus, Chikungunya virus, Hantavirus, Dengue virus types 1–4, and Lassa virus (L gene, GPC gene), and 11 kinds of viruses, the detection limit was confirmed at 5 copies/μl. No cross-reaction or interference between detected genes was observed. Conclusion: The virus test method developed through this study using multiplex is expected to be used for public health and quarantine as a test method that can be used when a hemorrhagic fever virus of unknown cause is introduced.