Düzce Üniversitesi Bilim ve Teknoloji Dergisi (Jul 2022)

Öğrencilerin Dersteki Niteliklerinin Makine Öğrenmesi Teknikleri Kullanılarak Sınıflandırılması

  • Osman Özkaraca,
  • Gürcan Çetin,
  • Murat Sakal,
  • Ercüment Güvenç

DOI
https://doi.org/10.29130/dubited.1017202
Journal volume & issue
Vol. 10, no. 3
pp. 1359 – 1371

Abstract

Read online

Öğrencilerin akademik başarılarını tahmin etme ve eksik oldukları alanları giderme anlamında yapılan bu çalışma, Bilişim Sistemleri Mühendisliğine Giriş dersi alan öğrencilere uygulanmıştır. Bu öğrencilerin dönem başı bilgisayar bilgi düzeylerinin, dönem sonunda elde ettikleri başarı notu üzerine etkisi makine öğrenmesi yöntemleri uygulanarak eğitim kalitesinin arttırılması amaçlanmıştır. Çalışmaya katılan öğrencilere ait veriseti eğitim ve test verisi olmak üzere ayrıldığında veri yetersizliğinden dolayı anlamsız sonuçlar ortaya çıkmıştır. Bu nedenle makine öğrenmesi algoritmalarının başarımını arttırmak için “Sentetik Azınlık Örneklem Arttırma Yöntemi (SMOTE)” çalışmada veri çoğaltma tekniği olarak seçilmiştir. Veri çoğaltma işlemi yapıldıktan sonra, veri seti üzerinde uygulanan K-en yakın komşu (KNN), Destek vektör makinesi (DVM), Lojistik Regresyon (LR), Rasgele Orman (RF), Karar ağaçları (DT) ve Naive Bayes makine öğrenmesi yöntemlerine göre en iyi sonucu en yakın komşuluk- KNN algoritması ile oluşturulmuş model vermiştir. Bu model, eğitim setinden bağımsız 300 öğrenciden oluşan test verisinin sınıflandırma işlemini, %97.66 doğrulukla tahmin etmiştir.

Keywords