BMC Anesthesiology (Apr 2021)
A prediction model using machine-learning algorithm for assessing intrathecal hyperbaric bupivacaine dose during cesarean section
Abstract
Abstract Background The intrathecal hyperbaric bupivacaine dosage for cesarean section is difficult to predetermine. This study aimed to develop a decision-support model using a machine-learning algorithm for assessing intrathecal hyperbaric bupivacaine dose based on physical variables during cesarean section. Methods Term parturients presenting for elective cesarean section under spinal anaesthesia were enrolled. Spinal anesthesia was performed at the L3/4 interspace with 0.5% hyperbaric bupivacaine at dosages determined by the anesthesiologist. A spinal spread level between T4-T6 was considered the appropriate block level. We used a machine-learning algorithm to identify relevant parameters. The dataset was split into derivation (80%) and validation (20%) cohorts. A decision-support model was developed for obtaining the regression equation between optimized intrathecal 0.5% hyperbaric bupivacaine volume and physical variables. Results A total of 684 parturients were included, of whom 516 (75.44%) and 168 (24.56%) had block levels between T4 and T6, and less than T6 or higher than T4, respectively. The appropriate block level rate was 75.44%, with the mean bupivacaine volume [1.965, 95%CI (1.945,1.984)]ml. In lasso regression, based on the principle of predicting a reasonable dose of intrathecal bupivacaine with fewer physical variables, the model is “Y=0.5922+ 0.055117* X1-0.017599*X2” (Y: bupivacaine volume; X1: vertebral column length; X2: abdominal girth), with λ 0.055, MSE 0.0087, and R2 0.807. Conclusions After applying a machine-learning algorithm, we developed a decision model with R2 0.8070 and MSE due to error 0.0087 using abdominal girth and vertebral column length for predicting the optimized intrathecal 0.5% hyperbaric bupivacaine dosage during term cesarean sections.
Keywords