Scientific Reports (Nov 2021)
Oscillatory active microrheology of active suspensions
Abstract
Abstract Using the method of Brownian dynamics, we investigate the dynamic properties of a 2d suspension of active disks at high Péclet numbers using active microrheology. In our simulations the tracer particle is driven either by a constant or an oscillatory external force. In the first case, we find that the mobility of the tracer initially appreciably decreases with the external force and then becomes approximately constant for larger forces. For an oscillatory driving force we find that the dynamic mobility shows a quite complex behavior—it displays a highly nonlinear behavior on both the amplitude and frequency of the driving force. In the range of forces studied, we do not observe a linear regime. This result is important because it reveals that a phenomenological description of tracer motion in active media in terms of a simple linear stochastic equation even with a memory-mobility kernel is not appropriate, in the general case.