PLoS ONE (Jan 2016)

Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO-cGMP-PKG-KATP Channel Signaling Pathway.

  • Marília F Manchope,
  • Cássia Calixto-Campos,
  • Letícia Coelho-Silva,
  • Ana C Zarpelon,
  • Felipe A Pinho-Ribeiro,
  • Sandra R Georgetti,
  • Marcela M Baracat,
  • Rúbia Casagrande,
  • Waldiceu A Verri

DOI
https://doi.org/10.1371/journal.pone.0153015
Journal volume & issue
Vol. 11, no. 4
p. e0153015

Abstract

Read online

In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO-cGMP-PKG-ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO-cGMP-PKG-KATP channel signaling involving the induction of Nrf2/HO-1 pathway.