Foods (Sep 2024)

Exploration of Volatileomics and Optical Properties of <i>Fusarium graminearum</i>-Contaminated Maize: An Application Basis for Low-Cost and Non-Destructive Detection

  • Maozhen Qu,
  • Changqing An,
  • Fang Cheng,
  • Jun Zhang

DOI
https://doi.org/10.3390/foods13193087
Journal volume & issue
Vol. 13, no. 19
p. 3087

Abstract

Read online

Fusarium graminearum (F. graminearum) in maize poses a threat to grain security. Current non-destructive detection methods face limited practical applications in grain quality detection. This study aims to understand the optical properties and volatileomics of F. graminearum-contaminated maize. Specifically, the transmission and reflection spectra (wavelength range of 200–1100 nm) were used to explore the optical properties of F. graminearum-contaminated maize. Volatile organic compounds (VOCs) of F. graminearum-contaminated maize were determined by headspace solid phase micro-extraction with gas chromatography-tandem mass spectrometry. The VOCs of normal maize were mainly alcohols and ketones, while the VOCs of severely contaminated maize became organic acids and alcohols. The ultraviolet excitation spectrum of maize showed a peak redshift as fungi grew, and the intensity decreased in the 400–600 nm band. Peak redshift and intensity changes were observed in the visible/near-infrared reflectance and transmission spectra of F. graminearum-contaminated maize. Remarkably, optical imaging platforms based on optical properties were developed to ensure high-throughput detection for single-kernel maize. The developed imaging platform could achieve more than 80% classification accuracy, whereas asymmetric polarization imaging achieved more than 93% prediction accuracy. Overall, these results can provide theoretical support for the cost-effective preparation of low-cost gas sensors and high-prediction sorting equipment for maize quality detection.

Keywords