Remote Sensing (Sep 2024)
Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model
Abstract
Orbit error is one of the primary error sources of interferometric synthetic aperture radar (InSAR) and differential InSAR (D-InSAR) measurements, arising from inaccurate orbit determination of SAR platforms. Typically, orbit error in the interferogram can be estimated using polynomial models. However, correcting for orbit errors with significant time-varying characteristics presents two main challenges: (1) the complexity and variability of the azimuth time-varying orbit errors make it difficult to accurately model them using a set of polynomial coefficients; (2) existing patch-based polynomial models rely on empirical segmentation and overlook the time-varying characteristics, resulting in residual orbital error phase. To overcome these problems, this study proposes an automated block adjustment framework for estimating time-varying orbit errors, incorporating the following innovations: (1) the differential interferogram is divided into several blocks along the azimuth direction to model orbit error separately; (2) automated segmentation is achieved by extracting morphological features (i.e., peaks and troughs) from the azimuthal profile; (3) a block adjustment method combining control points and connection points is proposed to determine the model coefficients of each block for the orbital error phase estimation. The feasibility of the proposed method was verified by repeat-pass L-band spaceborne and P-band airborne InSAR data, and finally, the InSAR digital elevation model (DEM) was generated for performance evaluation. Compared with the high-precision light detection and ranging (LiDAR) elevation, the root mean square error (RMSE) of InSAR DEM was reduced from 18.27 m to 7.04 m in the spaceborne dataset and from 7.83~14.97 m to 3.36~6.02 m in the airborne dataset. Then, further analysis demonstrated that the proposed method outperforms existing algorithms under single-baseline and single-polarization conditions. Moreover, the proposed method is applicable to both spaceborne and airborne InSAR data, demonstrating strong versatility and potential for broader applications.
Keywords