Journal of High Energy Physics (Jun 2024)
New Well-Posed boundary conditions for semi-classical Euclidean gravity
Abstract
Abstract We consider four-dimensional Euclidean gravity in a finite cavity. Dirichlet conditions do not yield a well-posed elliptic system, and Anderson has suggested boundary conditions that do. Here we point out that there exists a one-parameter family of boundary conditions, parameterized by a constant p, where a suitably Weyl rescaled boundary metric is fixed, and all give a well-posed elliptic system. Anderson and Dirichlet boundary conditions can be seen as the limits p → 0 and ∞ of these. Focussing on static Euclidean solutions, we derive a thermodynamic first law. Restricting to a spherical spatial boundary, the infillings are flat space or the Schwarzschild solution, and have similar thermodynamics to the Dirichlet case. We consider smooth Euclidean fluctuations about the flat space saddle; for p > 1/6 the spectrum of the Lichnerowicz operator is stable — its eigenvalues have positive real part. Thus we may regard large p as a regularization of the ill-posed Dirichlet boundary conditions. However for p 1/6, contrasting starkly with the Euclidean stability we found. Thus we seemingly obtain a system with stable thermodynamics, but unstable dynamics, calling into question the standard assumption of smoothness that we have implemented when discussing the Euclidean theory.
Keywords