JMIR Public Health and Surveillance (Aug 2023)

Using Bandit Algorithms to Maximize SARS-CoV-2 Case-Finding: Evaluation and Feasibility Study

  • Michael F Rayo,
  • Daria Faulkner,
  • David Kline,
  • Thomas Thornhill IV,
  • Samuel Malloy,
  • Dante Della Vella,
  • Dane A Morey,
  • Net Zhang,
  • Gregg Gonsalves

DOI
https://doi.org/10.2196/39754
Journal volume & issue
Vol. 9
p. e39754

Abstract

Read online

BackgroundThe Flexible Adaptive Algorithmic Surveillance Testing (FAAST) program represents an innovative approach for improving the detection of new cases of infectious disease; it is deployed here to screen and diagnose SARS-CoV-2. With the advent of treatment for COVID-19, finding individuals infected with SARS-CoV-2 is an urgent clinical and public health priority. While these kinds of Bayesian search algorithms are used widely in other settings (eg, to find downed aircraft, in submarine recovery, and to aid in oil exploration), this is the first time that Bayesian adaptive approaches have been used for active disease surveillance in the field. ObjectiveThis study’s objective was to evaluate a Bayesian search algorithm to target hotspots of SARS-CoV-2 transmission in the community with the goal of detecting the most cases over time across multiple locations in Columbus, Ohio, from August to October 2021. MethodsThe algorithm used to direct pop-up SARS-CoV-2 testing for this project is based on Thompson sampling, in which the aim is to maximize the average number of new cases of SARS-CoV-2 diagnosed among a set of testing locations based on sampling from prior probability distributions for each testing site. An academic-governmental partnership between Yale University, The Ohio State University, Wake Forest University, the Ohio Department of Health, the Ohio National Guard, and the Columbus Metropolitan Libraries conducted a study of bandit algorithms to maximize the detection of new cases of SARS-CoV-2 in this Ohio city in 2021. The initiative established pop-up COVID-19 testing sites at 13 Columbus locations, including library branches, recreational and community centers, movie theaters, homeless shelters, family services centers, and community event sites. Our team conducted between 0 and 56 tests at the 16 testing events, with an overall average of 25.3 tests conducted per event and a moving average that increased over time. Small incentives—including gift cards and take-home rapid antigen tests—were offered to those who approached the pop-up sites to encourage their participation. ResultsOver time, as expected, the Bayesian search algorithm directed testing efforts to locations with higher yields of new diagnoses. Surprisingly, the use of the algorithm also maximized the identification of cases among minority residents of underserved communities, particularly African Americans, with the pool of participants overrepresenting these people relative to the demographic profile of the local zip code in which testing sites were located. ConclusionsThis study demonstrated that a pop-up testing strategy using a bandit algorithm can be feasibly deployed in an urban setting during a pandemic. It is the first real-world use of these kinds of algorithms for disease surveillance and represents a key step in evaluating the effectiveness of their use in maximizing the detection of undiagnosed cases of SARS-CoV-2 and other infections, such as HIV.